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1 SVRG

1.1 Covariate of Stochastic Gradient

We still consider the finite-sum optimization problem. Let {(ai, bi)}mi=1 be a dataset, F = {hx|hx : A →
B,x ∈ Rn} be a class of predictor function and ℓ be a loss function. Then the corresponding finite-sum
optimization problem is

min
x

f(x) =
1

m

m∑
i

fi(x), (1)

where fi(x) := ℓ(bi, hx(ai)).

Though the stochastic gradient is an unbiased estimator of the gradient, it may have high variance. Indeed,
to analysis SGD we had to start by imposing the assumption about its variance

Eit [∥∇fit(x
t)∥2] ≤ σ2 + ∥∇f(xt)∥2.

Even with the above assumption, we required decreasing step sizes to gradually kill off the variance. Yet
another glaring issue with SGD is that even if we start the SGD algorithm on the optimal point x0 = x∗,
then method will not stop. This is because the stochastic gradients are not necessarily zero on the solution,
that is ∇fit(x

∗) ̸= 0 is entirely possible (see the example in SGD section).

The aim of SVRG is to construct a new “gradient” gt such that

• Unbiased: E[gt] = ∇f(xt)

• Reducing Variance:
E[∥gt∥22] → 0, as xt → x∗.

How to reduce the variance of stochastic gradient? The basic idea is to consider an important method in
MCMC. That is to construct a covariate variable of ∇fit(x

t).

Let x be a random variable. We asy that a random variable z is a covariate of x if cov(x, z) > 0. Then,
utilizing z can build an unbiased estimator of x that has a small variance. Let

xz = x− z+ E[z]. (2)

And note that E[xz] = E[x], and

V ar[xz] = V ar[x] + V ar[z]− 2Cov(x, z). (3)

Consequently, if Cov(x, z) is sufficiently large, then V ar[xz] is small.
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1.2 SVRG Algorithm

We can build an estimate of the gradient with reduced variance by finding covariates for the stochastic
gradient.

Let xt ∈ Rn be our current iterate and x̃k be a reference point. If xt is sufficiently close to x̃k it is reasonable
to expect that ∇fit(x

t) is the covariate of ∇fit(x̃
k). Then, it is uniformly sampled from [m] and

gt = ∇fit(x
t)−∇fit(x̃

k) +∇f(x̃k). (4)

Let us first refer to the SVRG [1] Algorithm 1.

Algorithm 1 SVRG
Parameters update frequency T and learning rate s
Initialize x̃0

for k = 1, 2, . . . do
x0 = x̃k−1

for t = 1, 2, . . . , T do
Randomly pick it ∈ {1, . . . , n} and update weight

gt−1 = ∇fit(x
t−1)−∇fit(x̃

k−1) +∇f(x̃k−1), (5)
xt = xt−1 − sgt−1. (6)

end for
Last Option: x̃k = xT ;
Average Option: x̃k = 1/T

∑
t x

t;
Random Option : x̃k = xt for randomly chosen t ∈ {1, . . . , T}.

end for

1.3 Convergence Analysis

We suppose that f is β smooth and α-strongly convex, and fi is convex and βi smooth. Before the convergence
analysis, we present the following lemmas.

Lemma 1 Let f is a β smooth function then

f(x− 1

β
∇f(x))− f(x) ≤ − 1

2β
∥∇f(x)∥2. (7)

Lemma 2 If each fit is βit smooth and convex, then

E[∥∇fit(x)−∇fit(x
∗)∥2] ≤ 2βmax(f(x)− f(x∗)). (8)

Proof 1 Let hit(x) = fit(x)− fit(x
∗)− ⟨∇fit(x

∗),x− x∗⟩ ≥ 0 due to the convexity. By Lemma 2, we have
that

− hit(x) ≤ hit(x− 1

βit

∇hit(x))− hit(x) ≤ − 1

2βit

∥∇hit(x)∥2 ≤ − 1

2βmax
∥∇hit(x)∥2. (9)

By substituting hit , then

∥∇fit(x)−∇fit(x
∗)∥2 ≤ 2βmax(fit(x)− fit(x

∗)− ⟨∇fit(x
∗),x− x∗⟩). (10)

Then taking expectation with respect to it and using that E[∇fit(x
∗)] = ∇f(x∗) = 0, we can finish the prove.
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Now we bound the variance of stochastic gradient.

Lemma 3 The second moment of SVRG gradient is bounded as

Eit [∥gt∥2] ≤ 4βmax(f(x
t)− f(x∗)) + 4βmax(f(x̃

k)− f(x∗)). (11)

Proof 2

Eit∥gt∥2 =Eit [∥∇fit(x
t)−∇fit(x

∗) +∇fit(x
∗)−∇fit(x̃

k) +∇f(x̃k)∥2] (12)
≤2Eit∥∇fit(x

t)−∇fit(x
∗)∥2 + 2Eit∥∇fit(x

∗)−∇fit(x̃
k) +∇f(x̃k)]∥2 (13)

≤2Eit∥∇fit(x
t)−∇fit(x

∗)∥2 + 2Eit∥∇fit(x
∗)−∇fit(x̃

k)∥2 (14)
≤4βmax(f(x

t)− f(x∗)) + 4βmax(f(x̃
k)− f(x∗)). (15)

Eq.(13) is based on (a+b)2 ≤ 2a2+2b2, and Eq.(14) is due to the following derivatives. Let x = ∇fit(x
∗), z =

∇fit(x̃
k),E[z] = ∇f(x̃k), and E[x] = 0. Thus,

E[∥x− z+ E[z]∥2] = E[∥x− z∥2] + ∥E[z]∥2 − 2E[⟨x− z,E[z]⟩] (16)
= E[∥x− z∥2]− ∥E[z]∥2 (17)
≤ E[∥x− z∥2]. (18)

Based on these lemmas, we can prove the convergence of SVRG.

Theorem 1 The sequence {x̃k} in Algorithm 1 has the following property

E[f(x̃k)− f(x∗)] ≤
[

1

αs(1− 2sβ)T
+

2sβ

1− 2sβ

]
E[f(x̃k−1)− f(x∗)], (19)

where β = βmax.

Proof 3 By conditioning on xt−1, we have Egt−1 = ∇f(xt−1) and this leads to

E∥xt − x∗∥2 =∥xt−1 − x∗∥2 − 2s(xt−1 − x∗)⊤Egt−1 + s2E∥gt−1∥2 (20)
≤∥xt−1 − x∗∥2 − 2s(xt−1 − x∗)⊤∇f(xt−1) + 4βs2[f(xt−1)− f(x∗) + f(x̃k)− f(x∗)] (21)
≤∥xt−1 − x∗∥2 − 2s(f(xt−1)− f(x∗)) + 4βs2[f(xt−1)− f(x∗) + f(x̃k)− f(x∗)] (22)
=∥xt−1 − x∗∥2 − 2s(1− 2sβ)[f(xt−1 − f(x∗)] + 4βs2[f(x̃k)− f(x∗)]. (23)

Take total expectation, summing up over t = 1, . . . , T , then

E∥xT − x∗∥2 ≤ E∥x0 − x∗∥2 − 2s(1− 2sβ)E[
T−1∑
t=0

(f(xt)− f(x∗))] + 4βs2T [f(x̃k)− f(x∗)]. (24)

Using that x0 = x̃k, strong convexity says f(x̃k) − f(x∗) ≥ α
2 ∥x̃

k − x∗∥2 and rearranging the formulation,
we have

2s(1− 2sβ)E[
T−1∑
t=0

(f(xt)− f(x∗))] ≤ E∥x0 − x∗∥2 − E∥xT − x∗∥2 + 4βs2T [f(x̃k)− f(x∗)] (25)

≤ (4Tβs2 + 2/α)[f(x̃k)− f(x∗)]. (26)
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Thus,

E[f(x̃k+1)]− f∗ = E[f(
1

T

T−1∑
t=0

xt)]− f∗ (27)

≤ 1

T
E[

T−1∑
t=0

f(xt)]− f∗ (28)

≤ 4Tβs2 + 2α−1

T2s(1− 2sβ)
E[f(x̃k)− f(x∗)] (29)

=

[
1

αs(1− 2sβ)T
+

2sβ

1− 2sβ

]
E[f(x̃k)− f(x∗)]. (30)

Mover, we can substitute s = 1/10β and T = 20β/α, then

[
1

αs(1− 2sβ)T
+

2sβ

1− 2sβ

]
= 7/8 < 0.9

.

Finally, we can obtain

E[f(x̃k)]− f∗ ≤ (0.9)kE[f(x̃0)− f(x∗)]. (31)
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